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Abstract. The stabilization method is applied to the case of interacting resonances in the photo-dissociation
of van der Waals clusters composed by a rare gas atom bound to a dihalogen molecule. The study of an
illustrative two-dimensional model consisting in a T-shaped NeI2 molecule shows the adequacy of the
method whenever the projection of the stabilization wave functions on the assumed prepared initial state
is accounted for. The agreement of the fragmentation cross-sections with some previous results using the
effective resolvent method and accurate close-coupling calculations is excellent. The method reveals its
utility as a complementary tool since allows, through the analysis of the stabilization wave function in
terms of zero-order levels, a precise characterization of the resonant states involved.

PACS. 33.40.+f Multiple resonances (including double and higher-order resonance processes, such as
double nuclear magnetic resonance, electron double resonance, and microwave optical double resonance) –
33.80.Gj Diffuse spectra; predissociation, photodissociation – 34.30.+h Intramolecular energy transfer;
intramolecular dynamics; dynamics of van der Waals molecules

1 Introduction

Resonant phenomena, where an excited quasi-bound state
is formed for a finite lapse of time to finally decay as a con-
sequence of the coupling with different continua, is com-
monplace in many fields of physics. Special interest has
been devoted to those situations where it is possible to
find quantum-interference effects between resonances [1].
One particular example is the photo-fragmentation of van
der Waals (vdW) clusters X· · ·Y2 formed by a rare gas
atom (X) and a dihalogen molecule (Y2). In this process,
the diatomic partner is promoted by means of a photon
excitation to a both electronically and vibrationally ex-
cited state within the complex, XY∗

2(v0), which in turn
fragmentates as a result of the energy transfer from the
diatomic vibrational mode to the vdW stretching mode.
This constitutes the mechanism of vibrational predisso-
ciation (VP). In the simplest case, the process may pro-
ceed via direct coupling between the initially excited state
of the complex and the different dissociative continua.
The absorption cross-sections obtained in this case present
a Lorentzian profile typically associated to isolated res-
onances. For the HeBr2 complex, for instance, it was
found that the direct mechanism uses to be the main
photo-fragmentation pathway when the bromine is ex-
cited to vibrational states with v0 ≤ 38 in the B elec-
tronic state [2]. As soon as higher vibrational states, close
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to the dissociation limit (v0 ≥ 42), are initially excited
an intramolecular vibrational-energy redistribution (IVR)
mechanism involving the energy flowing from the halo-
gen vibration to vdW excited modes of lower vibrational
manifolds (v < v0) competes with VP [3,4]. This sce-
nario thus involves the presence of additional resonant
quasi-bound states, energetically close to that initially
promoted by the photon excitation, which are populated
before the fragmentation process takes place. The cou-
pling among these quasi-bound states produces compli-
cated cross-section profiles which reveals the presence of
interacting resonances. Similar features of an IVR mech-
anism have been found in the fragmentation dynamics
of several vdW complexes such as ArI2[5], ArCl2[6,7],
NeI2 [8] and NeBr2 [9].

We have recently extended the effective resolvent
method, based on the wave operator theory of quantum
dynamics [10], to the case of interacting resonances [11]. In
that work where a T-shaped NeI2 vdW cluster was stud-
ied, the presence of two zero-order states (ZOS) nearly
degenerated (|v = 35, n = 0〉 and |34, 4〉, where v de-
notes the I2 vibrational level while n is the quantum num-
ber associated to the Ne–I2 stretching motion) creates
the two interacting resonances scenario studied there [11].
The effective resolvent results were compared with time-
dependent wave-packet propagations and with accurate
close-coupling calculations in the energy domain, probing
its numerical efficiency.
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In this work, we complete our previous study on
NeI2 [11] by applying the stabilization method [12,13].
This technique has been successfully used to character-
ize resonances and to obtain probability distributions in
a number of dynamical processes [14–16]. The procedure
followed here is closely related to that previously applied
to the HeBr2 complex [3] in which for the first time, in or-
der to obtain accurate cross-section profiles of fragmenta-
tion, not only the variation of the energy with a stabiliza-
tion parameter but also the projection of the stabilization
wave function on the prepared initial state is taken into
account. In addition, and as in reference [11], we consider
here four different initial states: the two zero-order levels
mentioned above, |35, 0〉 and |34, 4〉, together with two ex-
treme linear combinations of them, (1/

√
2)(|35, 0〉+|34, 4〉)

and (1/
√

2)(|35, 0〉−|34, 4〉), which almost diagonalize the
Hamiltonian in the discrete subspace. In this way, the rel-
evance of including such initial states through projections
of the stabilization wave function, in order to estimate
cross-section profiles, is shown. Furthermore, the analysis
of the stabilization wave function allows to characterize
the resonant states involved in the fragmentation process.

The goal of this study is to illustrate how such a sim-
ple method, in comparison with some other conventional
treatments that required much more work, can provide
however extremely helpful information. In the particular
case treated here the method, despite its great simplicity,
offers a detailed and precise insight of the physics of the
interacting resonances.

The basic theory which underlies the method is briefly
described in Section 2, while the results are presented and
discussed in Section 3. Finally, Section 4 collects the con-
clusions of this work.

2 Theory

The Hamiltonian for the T-shaped triatomic system in
Jacobi coordinates can be written as follows:

H =
−~

2

2µ2

∂2

∂r2
+ V (r) − ~

2

2µ3

∂2

∂R2
+W (R, r, θ = π/2),

(2.1)

where r is the elongation of the diatomic molecule I2, V (r)
its potential for the B electronic state and µ2 the corre-
sponding reduced mass. In turn, R is the distance from the
diatomic center of mass to the Ne atom, with µ3 being the
Ne–I2 reduced mass, and W is the intermolecular poten-
tial described as an addition of pairwise interactions [17].
Finally θ is the angle formed by the vectors r and R.

The eigenfunctions of the Hamiltonian in equa-
tion (2.1) are expanded as follows:

Φm(R, r;α) =
∑
vj

am
vj(α)χv(r)φj(R;α) (2.2)

where χv(r) are the eigenstates of the diatomic I2(B) sys-
tem. For the R coordinate a discrete variable representa-
tion (DVR) scheme based on particle-in-a-box (PINAB)

eigenfunctions is adopted. Following reference [18], the
φj(R;α) functions in (2.2) are given by:

φj(R;α) =
2√

Lα(N + 1)

N∑
k=1

sin
kπ(R− R0)

Lα
sin

kπj

N + 1
,

(2.3)

with N being the size of this basis set considered in the
calculation and Lα = Rmax(α)−R0 the length of the box.
Such basis functions depend on an α parameter through
the upper limit as follows:

Rmax(α) = R(0)
max − α, (2.4)

where R(0)
max is some initial guess for such a value. Discrete

values for the coordinate R within this DVR formalism
are finally given by:

Rjα =
jLα

N + 1
+R0, j = 1, ..., N. (2.5)

The stabilization method consists basically in carrying out
successive diagonalizations of the Hamiltonian matrix us-
ing slightly different basis sets which depend on the α
parameter. By varying the value of α it is possible to iden-
tify quasi-bound states or resonances of the system from
the stable behavior (in terms of α) of their correspond-
ing energies. The L2 representations of purely continuum
functions assumed by the method will however strongly
depend on α and not present a quasi-vertical character
in a stabilization diagram where α is plotted versus the
energy.

For each value of α, by diagonalizing the Hamiltonian,
stabilization wave functions Φm(α) and corresponding en-
ergies Em(α) are obtained. Within this formalism, the dis-
crete, stick form of cross-section averaged over a ∆α range
for the fragmentation of the system initially prepared in a
particular |vn〉 ZOS in the excited electronic B state, can
be written, in a similar way to that of reference [3]:

〈σvn(E)〉 ∼ (∆α)−1
∑
m

∣∣∣∣
dEm

dα

∣∣∣∣
−1

α∗
m

w(m)
vn (α∗

m). (2.6)

In this equation the right hand expression refers to the
averaged spectral density or density of states after such a
fragmentation process, 〈ρvn(E)〉, calculated by means of
the stabilization method, and w

(m)
vn (α∗

m) is the weight of
the stabilization wave-function on the |vn〉 ZOS, for the α
parameter value at which Em(α∗

m) = E, that is

w(m)
vn (α) = |〈Φm(α) | ψvn(α)〉|2 . (2.7)

In turn, the ψvn(α) functions in equation (2.7) for these
ZOS’s are obtained as the eigenstates of the Hamiltonian
of equation (2.1) for a given vibrational v state, 〈v|H |v〉,
and can be expressed as:

ψvn(R, r;α) = χv(r)
∑

j

b
(vn)
j φj(R;α). (2.8)
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Dealing with interacting resonances it is interesting to also
consider some linear combinations of the coupled ZOS’s.
Thus, since the states mainly involved in this particular
case under study, |35, 0〉 and |34, 4〉, become nearly degen-
erated as will be shown below, the following combinations
were additionally taken into account in our calculations:

ψ± =
1√
2

(ψ35,0 ± ψ34,4) . (2.9)

Obviously, the overlap between such ψ± functions and the
stabilization wave-function can be expressed in terms of
those defined in equation (2.7) as follows:

w
(m)
± =

1
2

(
w

(m)
35,0 + w

(m)
34,4 ± 2〈Φm | ψ35,0〉〈Φm | ψ34,4〉

)
·

(2.10)

Such a definition requires, in order to distinguish between
contributions to w(m)

+ and those to w(m)
− , that the numer-

ical phase of functions ψvn is consistently defined. There-
fore, in order to ensure so, we force those functions to
adopt a positive value for the last DVR point RN . Thus,
from equation (2.8), the following condition:

∑
j

b
(vn)
j φj(RN ;α) > 0 (2.11)

must be satisfied by the ZOS wave-functions.
The study of the interacting resonances found for the

system treated in this work is finally completed with the
probability densities for those energies of interest. These
densities are easily obtained from the stabilization wave-
function for a particular value of α as:

Dm(R, r;α) =| Φm(R, r;α) |2 . (2.12)

3 Results

In the calculations, five eigenstates χv(r) of the diatomic
I2 system from v = 32 up to v = 36 were employed.
The potential for the I–I interaction was taken from ref-
erence [19] Those functions were defined in a grid of
500 Gauss-Legendre points between r = 2.6 Å and r =
4.7 Å. For the R coordinate 250 DVR points were used
from the same number of PINAB functions. Initially the
box where those points were defined was set between 1.5 Å
and 25 Å with the upper limit decreasing successively in
steps of 0.005 Å. The stabilization diagrams were com-
puted for α values in the range [0−3.035] Å.

3.1 Stabilization diagram and densities of states

From Figure 1, where the level structure for v = 34 and
v = 35 vibrational manifolds is shown, it is clear that
|35, 0〉 and |34, 4〉 ZOS’s may become coupled since their
corresponding energies are almost degenerate (E35,0 =
−67.98 cm−1, E34,4 = −68.42 cm−1). In order to ana-
lyze the consequences of such a coupling between these
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Fig. 1. Quasi-bound states and continua of the T-shaped
NeI2(B) system for v = 34, 35 diatomic vibrational states. For
each vibrational manifold, vdW modes are labelled from 0 up
to 5. Energies are referred to the EI2(v = 35) diatomic level.

Fig. 2. Stabilization diagram: variation of the α parameter
versus the energy showing, as quasi-vertical lines, the regions
at which some resonance could appear. Dominant weights at

each energy, max{w(m)
vn } and max{w(m)

± }, defined after equa-
tions (2.7, 2.10) respectively, are also depicted as shadow lines.

In panel (a) results for w
(m)
35,0, in (b) for w

(m)
34,4 and panels (c)

and (d) are for w
(m)
+ and w

(m)
− respectively.

two states, stabilization calculations were performed to
simulate fragmentations from those ZOS’s and from their
linear combinations defined in equation (2.9). The stabi-
lization diagram where the α parameter is plotted ver-
sus the energy is shown in all the panels in Figure 2. In
panel (a), the dominant weight at each energy, for the
initial state |35, 0〉, max{w(m)

35,0}, is also depicted. The cor-
responding dimensionless values vary obviously within the
interval [0, 1], and to simplify the plot we have used the
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same ordinate scale than for the α parameter. Similarly,
panels (b) through (d) collect the corresponding dominant
weights for an initial state |34, 4〉 and the above mentioned
linear combinations, respectively besides the same stabi-
lization diagram. The diagram reveals the onset of the di-
atomic vibrational (v = 34)-manifold around −61 cm−1,
clearly unaffected by the variations in the streching co-
ordinate R, and three different regions with a stable be-
havior. In particular, the logical surmise which would re-
late stability found around −69 and −67 cm−1 (which we
will denote as L and R, respectively) with the interact-
ing ZOS’s mentioned before is confirmed by the profiles
resulting from the overlaps max{w(m)

35,0} and max{w(m)
34,4}

(panels (a) and (b) respectively). The coupling between
the two states yields intense peaks around both energies
regardless of the precise |vn〉 state considered in equa-
tion (2.7). This is the result found in those systems where
one particular state displays optical activity absorbing the
photon excitation and playing thus the role of a “bright”
state, while some other “dark” states, energetically cou-
pled to the former, turn to be also activated by means of
an IVR mechanism [3,7]. On the contrary, a similar cal-
culation not shown here for the |34, 5〉 ZOS as the initial
state reveals that it is almost decoupled from the rest.
In fact, a single maximum peak appears clearly centered
around the stable region found near −62 cm−1, which is
the expected behavior for isolated resonances.

In addition, it is worth mentioning that the results of
the calculations performed using weights w(m)

± , shown in
Figures 2c and 2d, demonstrate that ψ+ and ψ− functions
are correlated with the stable behavior found around L
and R energies.

From the weights and the information contained in the
stabilization diagram commented above it is possible to
extract the spectral densities and thus the corresponding
cross-sections for the fragmentation process under study
using equation (2.6). In Figures 3a–3d we show in arbi-
trary units 〈ρ35,0(E)〉, 〈ρ34,4(E)〉, 〈ρ+(E)〉, and 〈ρ−(E)〉
densities of states, respectively. In these figures, stabiliza-
tion results are compared with those obtained by means of
the effective resolvent method and accurate close-coupling
calculations reported in reference [11]. The agreement
found among the three different methods is excellent, giv-
ing confidence in these various approaches. There is a di-
rect relationship between the width of the peaks in the
density of state profile and the slope of the curves α(E) in
the stabilization diagram, in the sense that narrow peaks
are the result of more vertical (that is more stable) curves
which correspond to resonances with very well defined val-
ues of energy. In this sense the peak found for the R res-
onance becomes more intense and narrower than that for
the L resonance.

Furthermore, the quasi-Lorentzian profiles shown in
panels (c) and (d) are consequence of the fact that the
considered linear combinations of two ZOS’s are close to
eigenstates of the discrete part of the Hamiltonian and
turn to be suitable choices to describe the quasi-bound
states as isolated resonances. Necessity of accounting for
both ZOS’s, in order to describe correctly the fragmenta-

d)

-62-64-66-68 -72 -62-64-66-68-70-70
Energy (cm    )

a)

0

0.4

0.8

1.2

1.6

b)

-1
-72

c)

σ

0

0.4

0.8

1.2

Fig. 3. Averaged densities of states calculated with the
stabilization method (points) as defined in equation (2.6)
for the photo-fragmentation of the T-shaped NeI2(B) clus-
ter when the system is initially prepared in the following
ZOS’s: (a) |35, 0〉, (b) |34, 4〉, and the linear combinations (c)
[|35, 0〉 + |34, 4〉] /√2 and (d) [|35, 0〉 − |34, 4〉] /√2. With lines,
close-coupling (solid) and effective resolvent (dashed) calcula-
tions from reference [11].

tion dynamics in the energy range studied here, is there-
fore just a natural consequence of the existence of an
interacting-resonances scenario.

3.2 Probability densities

One of the most useful features of the stabilization method
when studying resonant states is the possibility of obtain-
ing the wave-function associated to the quasi-bound states
found in the calculation. In order to analyze the struc-
ture of the resonant wave-functions, Figure 4 displays the
distributions corresponding to the two ZOS’s mainly in-
volved. From the probability density Dm(R, r;α) defined
in equation (2.12) and calculated at those particular values
of the α parameter where a stable behavior is observed,
an analysis of the relevant wave-function can be carried
out. To characterize the two interacting resonant states,
probability densities were calculated at α = 2.520 Å for
the L resonance and α = 1.285 Å in the case of the R
resonance. The densities obtained for such values in both
cases are shown in Figures 5a and 6a respectively. The
components of the corresponding resonant wave-functions
on the different I2 vibrational manifolds and the weights
on the ZOS’s of interest are presented in Table 1. The
L and R resonances are located at −69.20 cm−1 and
−66.84 cm−1 respectively. Owing to the proper choice of
the α parameters, these eigenvalues associated to the two
resonances should not differ too much from those obtained
fitting the stabilization cross-sections to analytical expres-
sions [1,20,21].
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Table 1. Analysis of the resonant states (L and R) from the associated wave-function. In the second column, order m of the
eigenstate in the diagonalization performed at the corresponding value of the α parameter given in the third column. In the
fourth column, energy E of the resonant state. From fifth up to eighth column, total weights in each vibrational manifold,
the last two columns collecting the weights in |35, 0〉 and |34, 4〉 ZOS’s, respectively.

Res m α(Å) E(cm−1) w
(m)
32 w

(m)
33 w

(m)
34 w

(m)
35 w

(m)
35,0 w

(m)
34,4

L 175 2.520 −69.198 0.160 0.234 0.402 0.204 0.195 0.386
R 256 1.285 −66.836 0.027 0.221 0.243 0.509 0.501 0.208

Fig. 4. Probability densities of the ZOS’s at α = 2.52 Å: (a)
|ψ35,0|2 and (b) |ψ34,4|2. Distances r and R in Å.

Fig. 5. (a) Dm(R, r) probability density as defined in equa-
tion (2.12) for L resonance at α = 2.52 Å, and (b) probability
density for the ψ+ linear combination.

Fig. 6. Same as Figure 5 for (a) R resonance at α = 1.285 Å
and (b) for ψ−.

From Figures 5a and 6a it is easy to observe the con-
sequences of the interaction of the two ZOS’s involved
in the resonant process. In both cases the 2D probabil-
ity density Dm(R, r) shows features of four quasi-nodes in
the R-direction, specially for the L resonance, Figure 5a,
in the region of [4−4.5] Å for r, as expected since the
|34, 4〉 ZOS is playing a significant role. Analogously, the
strong maximum found for the R resonance, Figure 6a,
at r ∼ 4.2 Å and R ∼ 4 Å reveals the presence of the
|35, 0〉 ZOS. These indications are clearly corroborated by
the values of weights w(m)

35,0 and w(m)
34,4 shown in Table 1: in

L resonance we find a mixture of about 20% of the |35, 0〉
state and about 39% of |34, 4〉 state, whereas R resonance
turns to be the result of a 50% and 21% of |35, 0〉 and
|34, 4〉 ZOS’s respectively. Moreover, these two ZOS’s are
responsible of the total component of the (v = 35)- and
(v = 34)-manifolds in both resonances, suggesting that
the participation of some other possible |35, n 6= 0〉 and
|34, n 6= 4〉 ZOS’s is almost negligible. Considerable contri-
bution from the the two other lower vibrational manifolds
v < 34 is also obtained but it is originated exclusively by
(v = 33)- and (v = 32)-continua since no ZOS’s such that
Evn < EI2(v) exist in the energy range studied here for
any of those vibrational states.
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The resonant states cannot be identified with individ-
ual ZOS, as can be seen comparing Figure 4 with Fig-
ures 5a and 6a. On the contrary, and to stress the fact
that the linear combinations of the two ZOS’s already
mentioned closely represent the resonance states corre-
sponding to L and R, we display in Figures 5b and 6b the
2D distributions |ψ+|2 and |ψ−|2, respectively. One clearly
sees the similarities of panels (a) and (b) within each of the
Figures 5 and 6, in particular for R values lower than 5 Å;
at longer distances, contributions from the continua be-
come more significant and give rise to stronger differences
between each actual resonant state and the corresponding
purely discrete linear combination.

Finally, and as was mentioned above, by inspecting
the weight w(m)

34,5 and carrying out a similar analysis for
α = 0.935 Å, one sees that the corresponding resonant
state for the stable curves found at E ∼ −62 cm−1 has a
component on the (v = 35)-manifold only of ∼ 2%, while
the presence of the (v = 34)-manifold grows up to ∼ 64%
due exclusively to the |34, 5〉 ZOS. No interaction with
some other ZOS’s then takes place at this energy region.

4 Conclusions

Application of the stabilization method to a case of in-
teracting resonances in the fragmentation process of a
T-shaped NeI2(B) complex illustrates the feasibility and
suitability of the method to deal with such interesting phe-
nomena. The extreme simplicity of the procedure (only
diagonalizations of the Hamiltonian matrix are required)
contrasts with the detailed and complete information that
is possible to obtain.

Resonances are identified by means of the stable be-
havior of the energy curves in the stabilization diagram,
and the overlap of the assumed initially prepared state
with the corresponding stabilization wave-function is em-
ployed to calculate fragmentation densities of states. Com-
parison with results obtained by using some other meth-
ods give us confidence on the accuracy of the stabilization
procedure. Moreover, analysis of the probability density
functions corresponding to the resonant states clarify the
composition of such resonances and the role played by the
|v, n〉 ZOS’s required to explain the interaction effects.
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